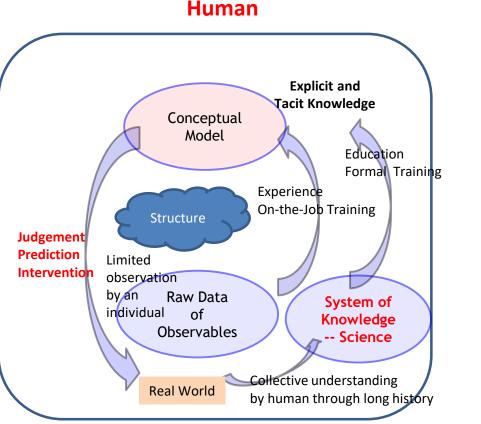
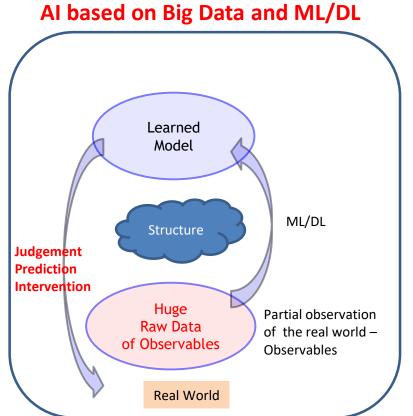


Al and the Future of Society -- from the Perspectives of the AIRC--

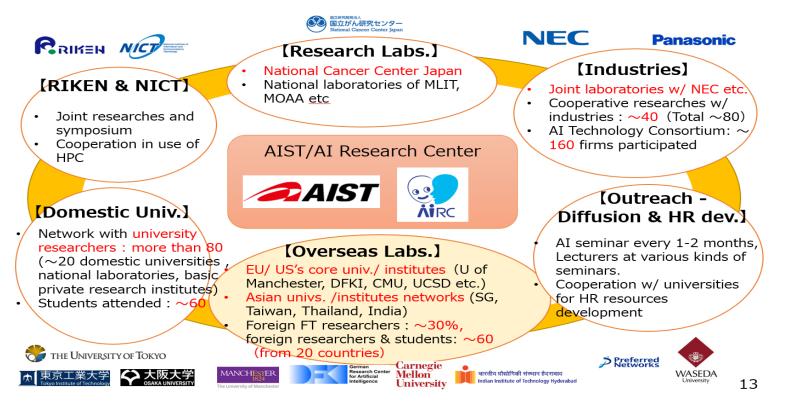
Junichi Tsujii Director AIRC (Artificial Intelligence Research Centre) AIST, Japan

> Professor School of Computer Science University of Manchester, UK


History of AIRC


- AIRC/ AIST was established in May 2015 to be the largest AI research center in Japan for promoting large-scale AI research with PPP.
- Cooperating with RIKEN and NICT, AIRC/AIST accelerates AI R&D and deployment with industries and overseas research institutes.

	AIRC/AIST	RIKEN • NICT and governments	
FY2015	AIRC established (May 2015) • NEDO research project fund contracted(Jul 2015) • AI Technology Consortium established(Jul 2015) • Commemorative symposium (Sep. 2015) • LOI with Carnegie Mellon University (Dec. 2015)	NICT • CiNet (2013~), others • Google (Alpha Go) beats Lee Sedol (Mar. 2016)	
FY2016	 Organizational change (Apr. 2016) First Joint Symposium on Next Generation AI Technology (Apr. NEC-AIST AI Cooperative Research Lab established Research project w/ National Cancer Center Japans Panasonic – AIST Advanced AI collaborative Lab esta MOU with German Research Center for AI Research NEDO projects interim progress presentation (2017) 	Jun. 2016) tarted(Nov. 2016) blished (Feb. 2017) (DFKI) (Mar. 2016)	
FY2017	Second Joint Symposium on Next Generation AI Technology (I	NICT AlS established (Apr. 2017)	


Co-Operation and Co-Evolution of Humans and AIs

- Human Intelligence : Combination of Explicit (Symbolic) and Tacit Knowledge
- AI Intelligence : Modelling based on Big Data, Black Box
- How Tacit Knowledge in Human is represented and interacts with explicit knowledge is not well-understood
- How results of ML and DL contribute to intelligent judgement is not well-understood
- XAI is to make models learned by ML/DL transparent and help Humans relate them with their knowledge

Network of Partners

MOU with U-Manchester and ATI

Next AI Research Direction

- Current AI development is led by tech giants in US and China, based on Big Data from Internet.
- New AI platform technology is necessary to **utilize AI for real world with human**, including mobility, health and welfare, and industrial productivity.
- Our strategic focus is on data-knowledge fusion in industrial and service sectors in which Japan has advantage

< Our research direction of AI development >

	Internet-based AI			AI embedded in real world AI to cooperate with Human - Utilizing data and knowledge in industry
Data / knowledge	 <ai big="" data="" using=""></ai> Learning from Big Data in Internet Developing correct data by cloud sourcing 		Data / knowledge	 <ai cooperate="" human="" to="" with=""></ai> Utilizing sound data in industry and service sector (e.g. health data, IoT data in factories) Utilizing professional knowledge (conversion to AI)
Reliability	<priority agility="" in=""> Releasing β-version and improving </priority>		Reliability	 <<u>AI reliable in real world></u> Assessing reliability of AI before introducing into real world
Developme nt process	<manpower based=""> Self-sourced business using huge AI manpower </manpower>	/	Development process	<easily-implementable ai=""> Promoting business development by user-driven AI development </easily-implementable>

Real World AI - from the Internet to the Real World -

Al which cooperates with Human Cooperative Autonomy, Explainable Al

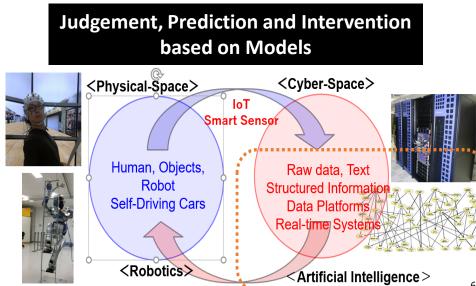
Al in Contexts

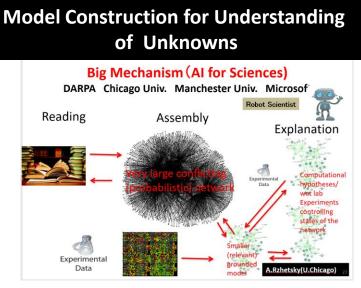
[1] AI in Digital Transformation

[2] AI for Competition/Cooperation

[3] AI as Existential Threats

[1] AI in Digital Transformation

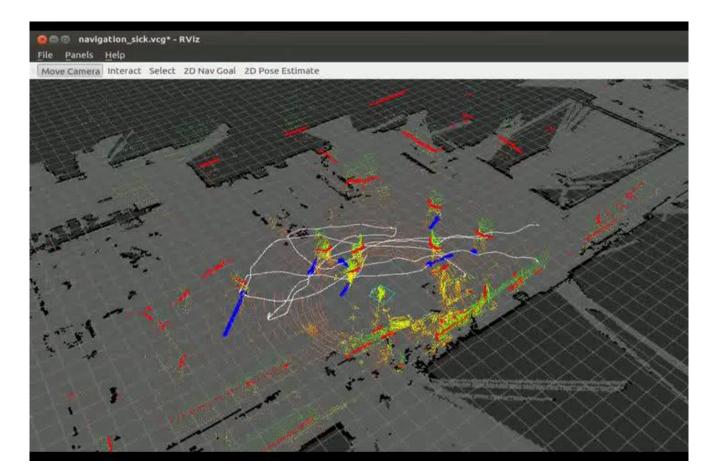

Society 5.0 : Next Stage of Human Society

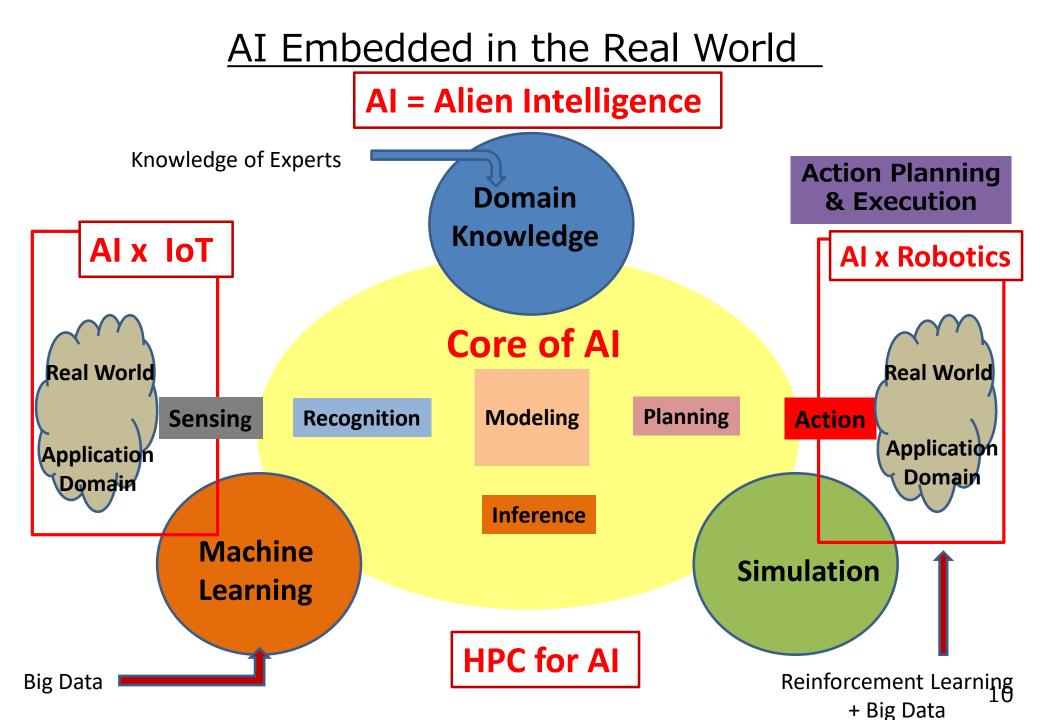

 Digital Twin, Cyber-Physical System, Industry 4.0, Connected Factory, Connected Health, Precision Medicine, Robot Co-Workers, Connected Logistics, ...

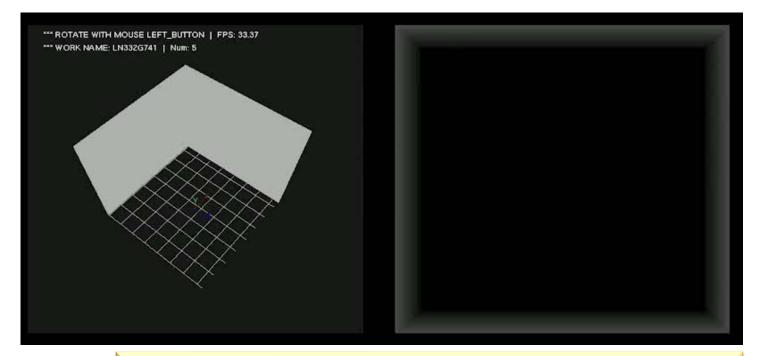
5th Paradigm in Science/Engineering

Computational Science (Simulation) + 4th Paradigm (Big Data Analytics)

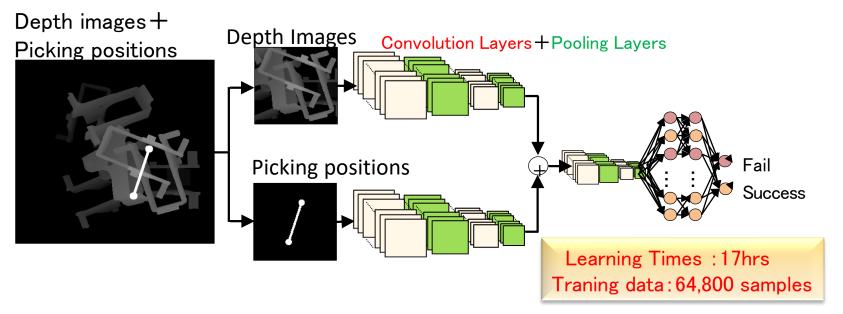
-> 5th paradigm (Simulation + ML + Knowledge)

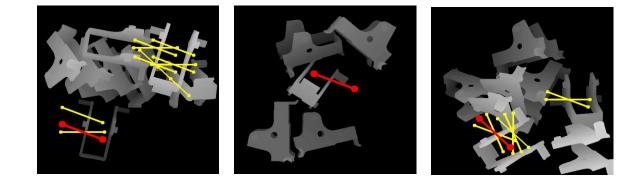



Self-Navigating Robot with a model of environment



Model-Driven Robotics to Data-Driven Robotics




Data Generation by Simulation

Base Engine for Simulation : PhysX Recognition of interaction among objects Real-time Simulation

Learning of the best picking positions

<u>Red:Best</u> Yellow:90%

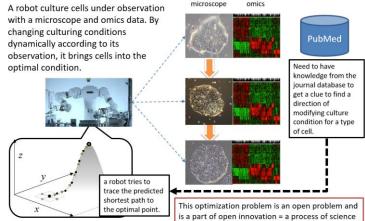
Learning from Demonstration

[Learning from Demonstration with Deep Neural Networks]

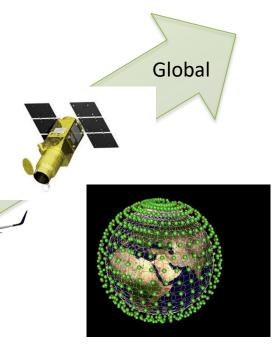
- able to handle flexible objects
- learning from small number of demonstrations

Social Intelligence Research Team

Lab Droid "Mahoro" x AI


[Autonomous Cell Culturing System]

- Combining bio-LabDroid "Mahoro" and computer vision for measuring cell cultivation
- Optimizing the conditions of cell culturing autonomously by Bayesian optimization

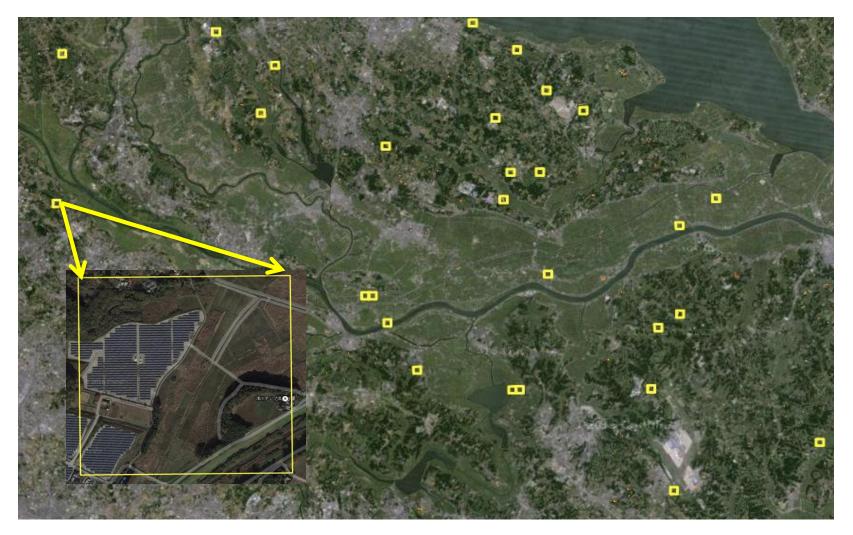

Computational Omics Research Team

Autonomous Cell Culturing System

Construction of Multiscale Geospatial/Temporal Information Platform

- Maps can be created by various moving bodies other than satellites
- Recording more accurate changes by using multi-scale map

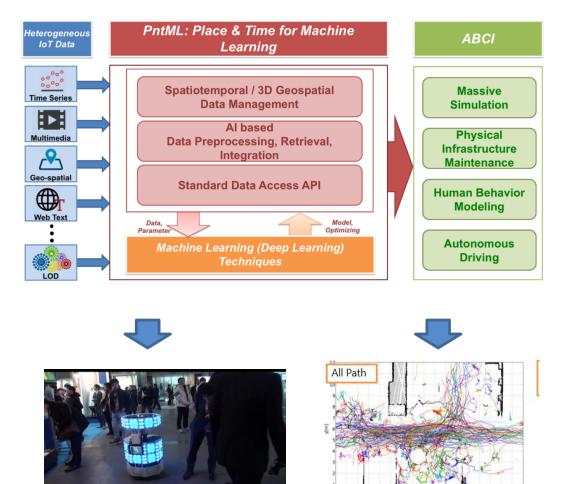
Local


Real-time copy of real space built on cyber space

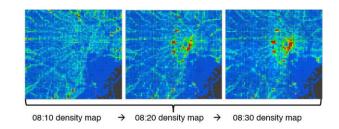
Common functions at all scales: object recognition / change detection and dynamic update

Object Detection from Satellite Images

[Mega-solar detection from satellite images]


- application of deep learning to very large-scale data

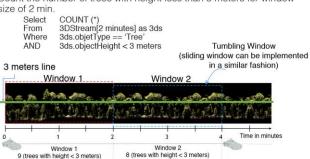
Geoinformation Science Research Team


GeoAl platform

GeoAl Data Platform for Al+IoT+Robotics

DeepUrbanVideo

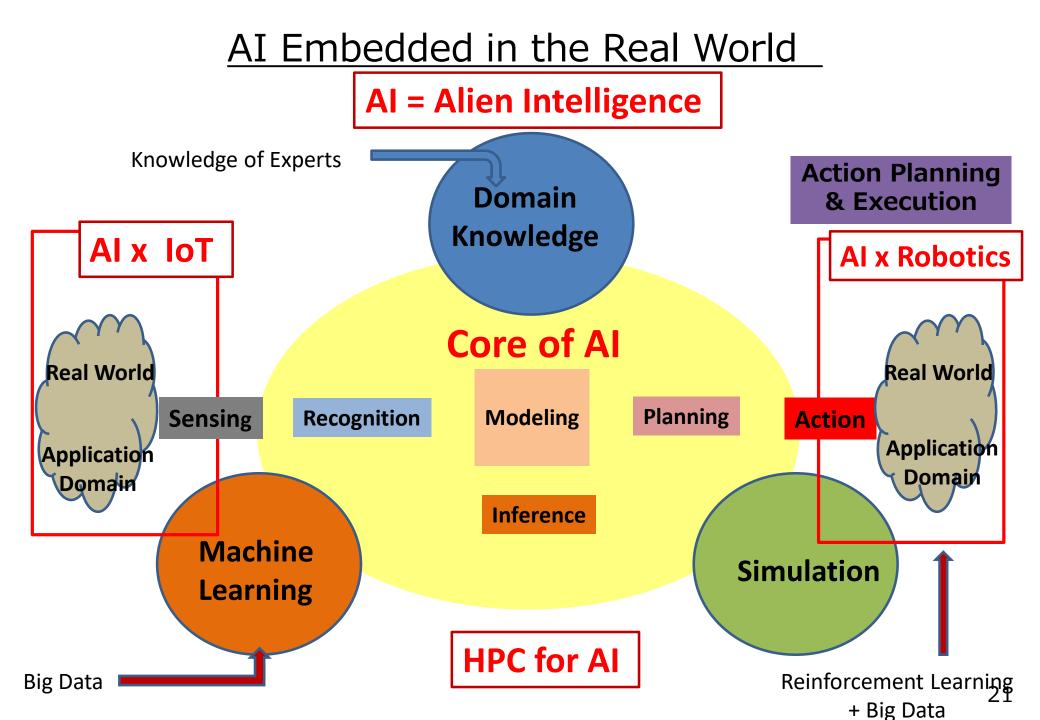
Movement prediction for the future (e.g. 2 hours later)



How to predict movement flow for urban computing and simulation based on density observations

Sample Window-based **Continuous Query over 3D Stream**

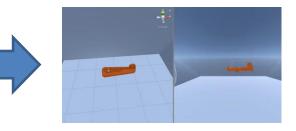
· Count the number of trees with height less than 3 meters for window size of 2 min.



AI Embedded in the Real World - from the Internet to the Real World -

Al which cooperates with Human Cooperative Autonomy, Explainable Al

Communication


Narrow Channels for communication between AI and HI

- Transferring knowledge to AI systems by HI
- Knowledge Acquisition Bottle-Neck (2nd AI boom)
- Data Annotation Bottle-Neck (3rd AI boom)
- Explaining the thought processes to HI by AI systems
- Data + Annotation, Teaching by program
 - Language
 - Rules
 - Mathematics
 - Simulation models
 - Teaching by showing
 - Active Learning
- Black box
 - Explainable AI
 - Visualization
 - Simulation

Baseline method: A man is drinking. Proposed method: A girl is doing makeup.

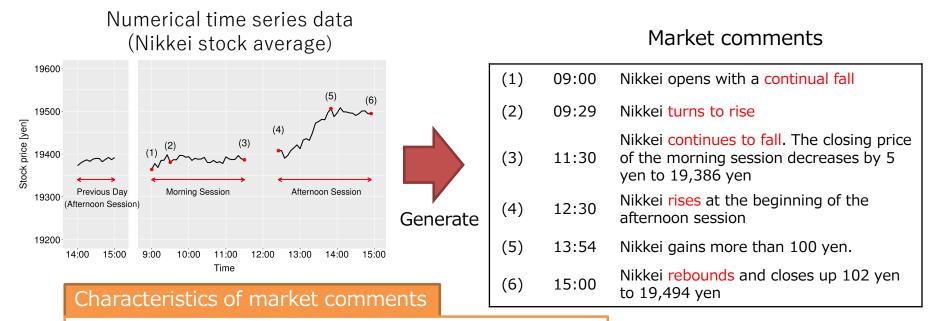
From Video to textual explanation

Output="A monkey is doing a karate with a man."

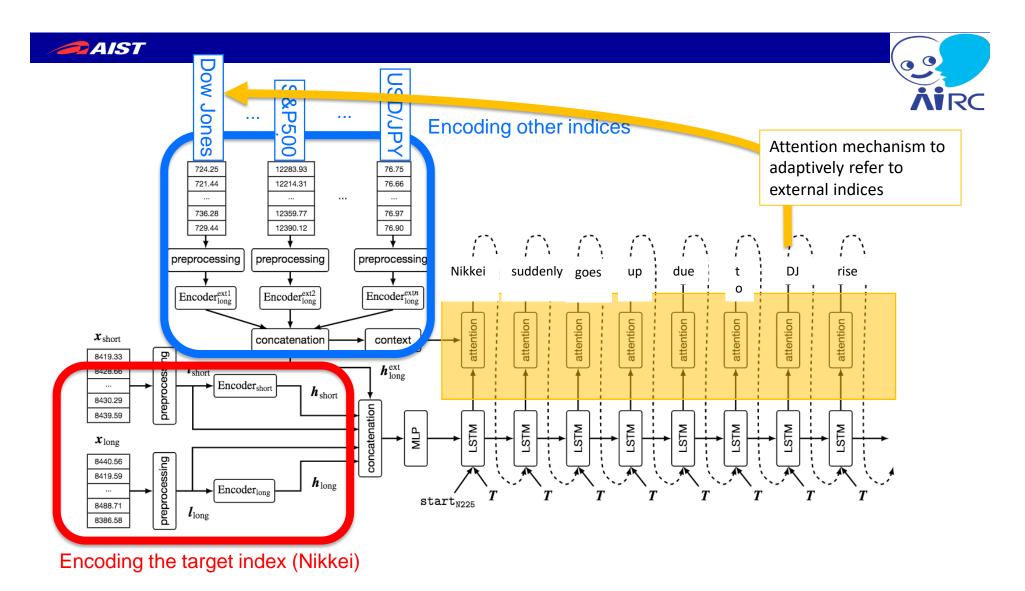
Video Captioning

Recognition of sequences of actions with fine-grained object detection Significant error reduction by sequence recognition

Baseline method: A man is drinking. Proposed method: A girl is doing makeup.

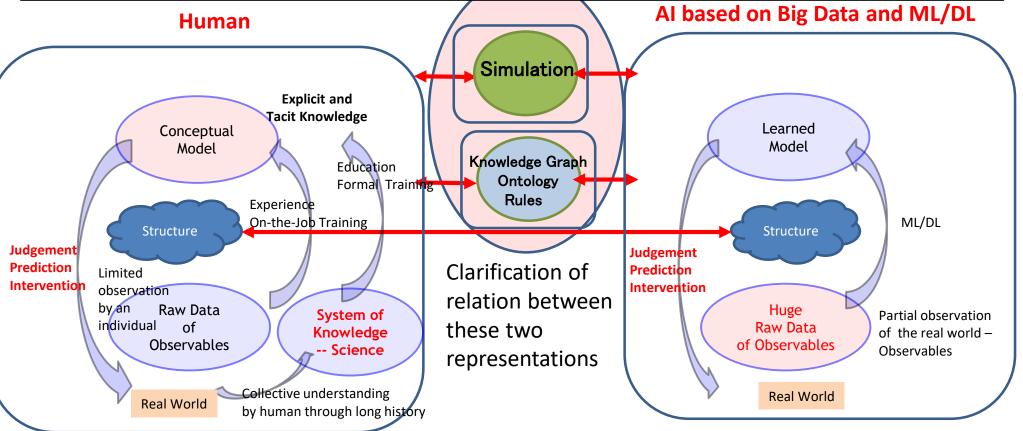

Baseline Method: A dog is playing with a dog. Proposed Method: A boy is playing with a dog.

Baseline Method : A man is riding a car. Proposed Method: A woman is riding a boat. Baseline Method: A man is riding a bicycle. Proposed Method : A man is riding a <u>bike</u>.


From Data to Text

Characteristics of the task

1. Both short- and long-term changes are described


- 2. Some expressions depend on their delivery time
- 3. Numerical values are often mentioned

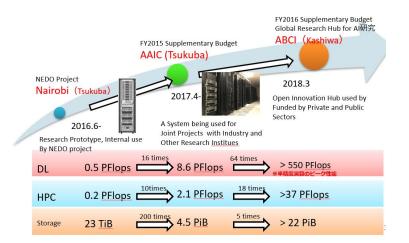
円高が進んだため、輸出関連株が下落し、日経は反落して始まった。

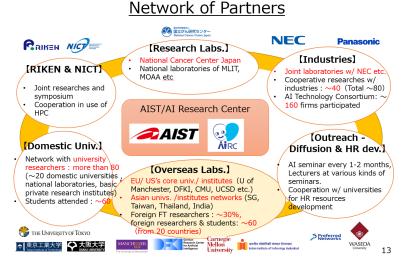
Co-Operation and Co-Evolution of Humans and AIs

- Human Intelligence : Combination of Explicit (Symbolic) and Tacit Knowledge
- AI Intelligence : Modelling based on Big Data, Black Box
- How Tacit Knowledge in Human is represented and interacts with explicit knowledge is not well-understood
- How results of ML and DL contribute to intelligent judgement is not well-understood
- XAI is to make models learned by ML/DL transparent and help Humans relate them with their knowledge

Al in Contexts

[1] AI in Digital Transformation

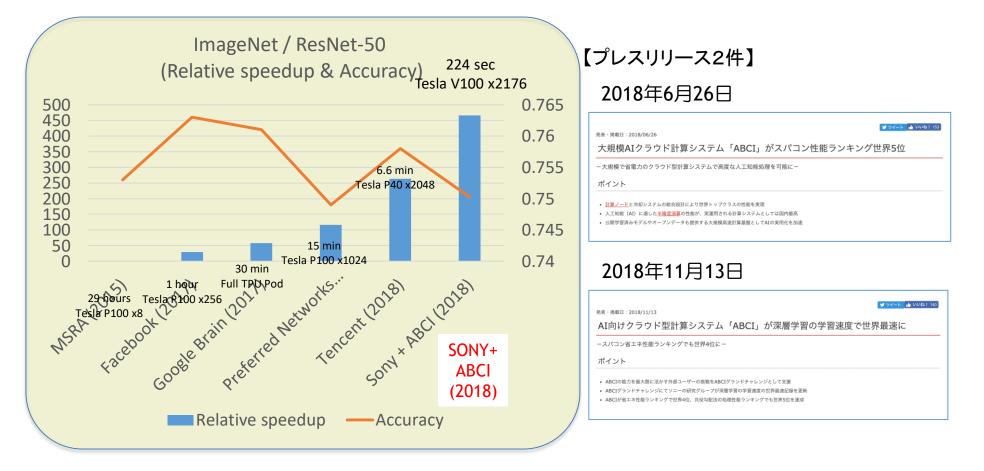

[2] Al for Competition/Cooperation


[3] AI as Existential Threats

[2] AI for Competition/Cooperation

• Nations/Regions

- Al as one of the focal technologies of international competition/Cooperation
 - Technologies made in X: USA, China, Europe, Asia
- IT Giants vs. other Industries, Private vs. Public
 - Manufacturing, Retailing,, Health care, Transportation(Mobility),
- Competition for Resources
 - Human Resources (AI researchers/engineers), Computation Resources (Cloud and HPC), and Data Resources
 - Monopoly of Resources by IT giants



AI Cloud Computational Infrastructure : ABCI

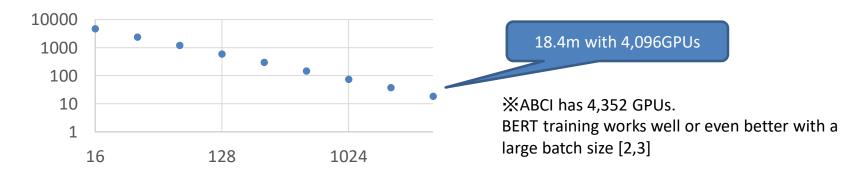
- AI research needs a large scale computational infrastructure. AI Bridging Cloud Infrastructure (ABCI), developed by AIRC/AIST and Tokyo Tech OIL especially for ML/DL, was placed at the <u>5th of a ranking list</u> in the Top500's high-performance supercomputers (Jun. 2018)
- ABCI started its operation in Aug. 2018. <u>Open data and model</u> will be available with <u>open innovation systems</u> on ABCI.
- A Japanese company attained <u>the world fastest deep learning speeds</u> by using ABCI (Nov. 2018)

	Top500's high-performance supercomputers (2018/6) _{Cores} (TFlop/s) Power (TFlop/s) Power		
	1 Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM D0E/SC/0ak Ridge National Laboratory United States 2,282,544 122,300.0 187,659.3 8,806		
	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 10,649,600 93,014.6 125,435.9 15,371 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China China		
	 Sierra - IBM Power System S922LC, IBM POWER9 22C 3.16Hz, 1,572,480 71,610.0 119,193.6 NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM D0E/NNSA/LLNL United States 		
	4 Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, 4,981,760 61,444.5 100,678.7 18,482 TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China 100,678.7 18,482		
November 13, 2018	 Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2550 M4, 391,680 19,880.0 32,576.6 1,649 Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science and Technology [AIST] Japan 		
Sony Achieves World's Fastest ^{*1} Deep Learning Speeds through Distributed Learning Reaches Efficiency Milestone for Al Development	6 Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.66Hz, Aries 361,760 19,590.0 25,326.3 2,272 Interconnect NVIIIA Letta PIIII Crav Inc. 300		

Imagenet - Competition of Learning Speed

The team of the AIRC/AIST and Sony is in the top tier.

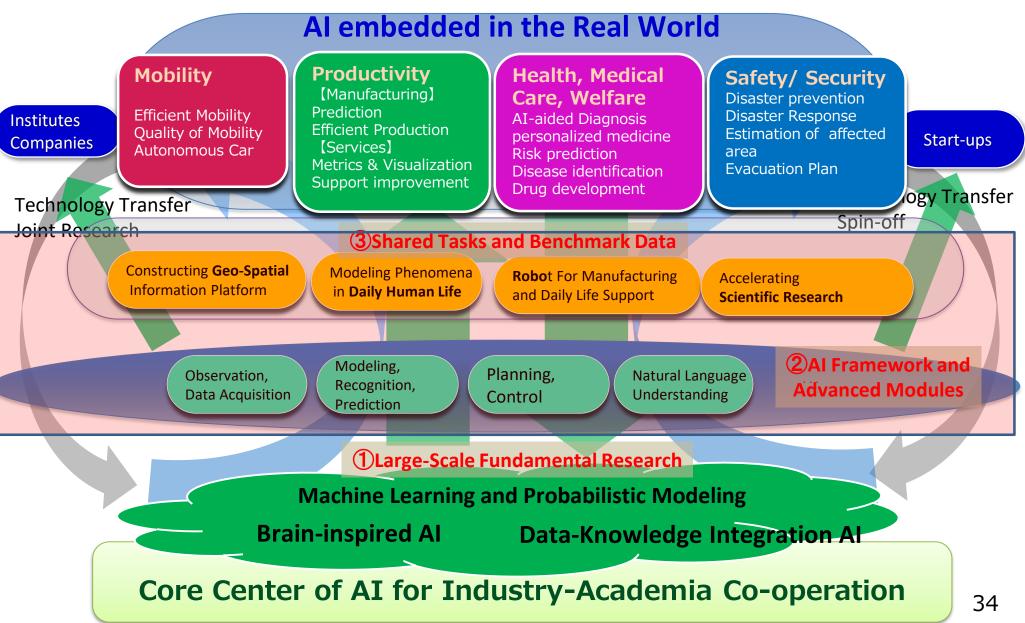
Action Recognition from Video with 3D ResNet


K. Hara, H. Kataoka, Y. Sato: Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?, CVPR 2018

Training time of BERT on ABCI

Implementation	Environment	Training time	Cost (\$) (excl. tax)	•
Tensorflow [1]	16 Cloud TPUs	4 days	8,017	
Tensorflow	64 GPUs (ABCI)	4.06 days	4,014	
PyTorch (Apex, FP16)	64 GPUs (ABCI)	2.35 days	2,323	

- The same training data and epochs as in [1]
 - Time for preprocessing is excluded


[1] Jacob Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT, 2019.

[2] Yang You et al., Large Batch Optimization for Deep Learning: Training BERT in 76 minutes, arxiv, 2019.

[3] Yinhan Liu et al., RoBERTa: A Robustly Optimized BERT Pretraining Approach, arxiv, 2019.

Strategy for AI research

- Creating positive cycle among research and deployment of AI

Main Research Results at AIRC

Observation, Data Acquisition	Modeling, Recognition, Prediction	Planning, Control
 Publish Satellite image data (more than 1PB) in international standard format with cutting edge AI functions. Autonomous robots which move around and detect / follow other moving objects (human, vehicles). Modeling trajectories and predicting directions. Construct "Living Lab", which connect AIST and nursing facilities. Data acquisition for precision care at real living environment. 	 Probabilistic modeling system using Bayesian-net and PLSA. Realize optimization of customers behavior and services (36 licensing contacts during 2015-16) Create systems to recognize humans behavioral patterns by using deep learning technology from video of every day life. Will publish training video data (more than 100 thousands) soon (world largest) Develop a system for detecting 	 Develop systems that automatically assemble simple parts by using database of humans behavior. Verified at three kinds of parts assembly. Develop systems to learn complex behavior such as folding towels only by teaching several times (using deep learning technology) Enable of properly manipulating deformable object such as hanging a shirt to a hanger.
Construct a VR-interaction data acquisition system (beta version)	 suspected parts of breast cancer from data of ultrasonic diagnosis. Develop systems to identify 	Natural Language Understanding
HPC – Large Scale Computing	household items/ functions from their 3D data. Win 1 st place at an international competition of 3D	Construct and publish elemental function modules of natural language processing.
 AIST AI Cloud (AAIC), a HPC which is focusing on AI/ machine learning, attained No.3 in the world at Green 500 List. Contribute to standardization of data access format which facilitates usage of moving features data 	 object retrieval. Win 1st place at an international competition of protein structure prediction. Develop a method of pedestrian flow measurement and large scale simulation of indoor and outdoor evacuation of people. 	 Realize clustering and visualization of large scale scientific literature. (world top level) Automatically generate captions of short video or time-series data using deep learning technology (world top level) Construct an ontology for describing knowledge of elderly care and apply
		to service improvement. 35

Al in Contexts

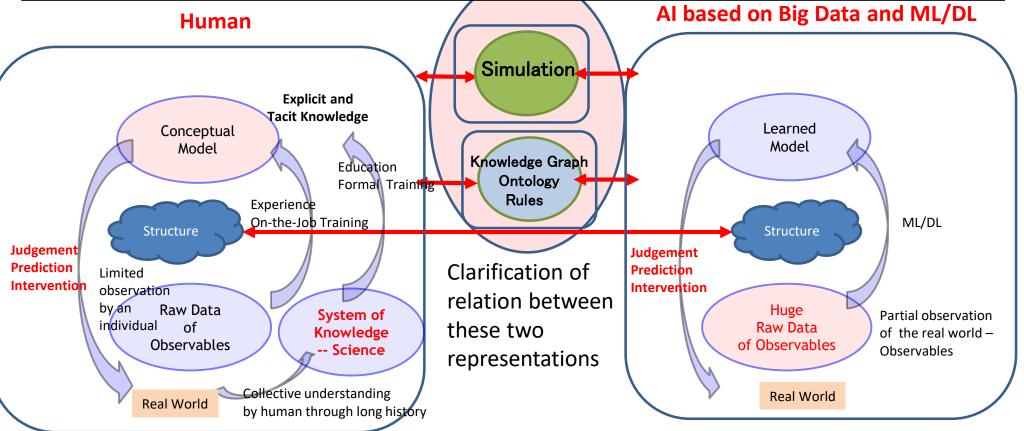
[1] AI in Digital Transformation

[2] AI for Competition/Cooperation

[3] AI as Existential Threats

[3] AI as Existential Threats

- AI : Alien Intelligence
 - Black box and Autonomous System
 - Superseding human intelligence
- Human controls tools -> AI controls Human



AI based on big data by using HPC AI which supersedes human intelligence

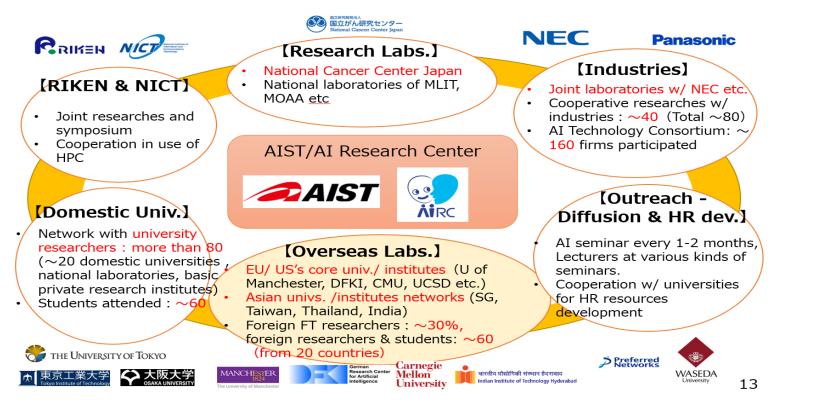
Co-Operation and Co-Evolution of Humans and AIs

- Human Intelligence : Combination of Explicit (Symbolic) and Tacit Knowledge
- AI Intelligence : Modelling based on Big Data, Black Box
- How Tacit Knowledge in Human is represented and interacts with explicit knowledge is not well-understood
- How results of ML and DL contribute to intelligent judgement is not well-understood
- XAI is to make models learned by ML/DL transparent and help Humans relate them with their knowledge

Communication

Narrow Channels for communication between AI and HI

- Transferring knowledge to AI systems by HI
- Knowledge Acquisition Bottle-Neck (2nd AI boom)
- Data Annotation Bottle-Neck (3rd AI boom)
- Explaining the thought processes to HI by AI systems
- Data + Annotation, Teaching by program
 - Language
 - Rules
 - Mathematics
 - Simulation models
 - Teaching by showing
 - Active Learning
- Black box
 - Explainable AI
 - Visualization
 - Simulation



Baseline method: A man is drinking. Proposed method: A girl is doing makeup.

Network of Partners

Thank you for your attention